Navigation

Finding your way by land, sea, and sky.

Core Areas

Area Topics

Cartography

Projections, coordinate systems, topographic maps, nautical charts, GIS

Celestial Navigation

Celestial coordinates, sextant, sight reduction, star identification

Land Navigation

Map reading, compass, terrain association, dead reckoning

Marine Navigation

Piloting, electronic navigation, weather routing

Mathematics

Spherical trigonometry, great circles, time & longitude

The Art and Science of Navigation

Navigation is where multiple disciplines converge:

  • Mathematics — spherical trigonometry, coordinate geometry

  • Astronomy — celestial mechanics, star positions

  • Geography — Earth’s shape, magnetic variation

  • Physics — optics (sextant), magnetism (compass)

  • Meteorology — weather patterns, ocean currents

Coordinate Systems

System Format Use

Geographic (Lat/Long)

DD°MM’SS" N/S, E/W

Universal, navigation

UTM

Zone + Easting + Northing

Military, topographic maps

MGRS

Zone + Grid Square + Coords

Military (NATO standard)

Celestial (RA/Dec)

RA (hours) / Dec (degrees)

Astronomy, celestial navigation

The Celestial Sphere

                         ★ Polaris (NCP)
                              │
                              │ Declination (+90°)
                              │
        ┌─────────────────────┼─────────────────────┐
        │                     │                     │
        │    ★ Star          │                     │
        │      \              │                     │
        │       \  altitude   │                     │
        │        \  (Ho)      │                     │
   ─────┼─────────\───────────┼────── Celestial ────┼───►
        │          \ azimuth  │        Equator      │  RA
        │           \         │                     │
        │            O Observer                     │
        │                                           │
        └───────────────────────────────────────────┘
                              │
                              │ Declination (-90°)
                              ▼
                         South Celestial Pole

The Navigation Triangle

The fundamental problem of celestial navigation:

\[\cos(z) = \sin(L) \sin(d) + \cos(L) \cos(d) \cos(LHA)\]

Where:

  • \(z\) = zenith distance (90° - altitude)

  • \(L\) = observer’s latitude

  • \(d\) = body’s declination

  • \(LHA\) = local hour angle